If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+96t+128
We move all terms to the left:
t-(-16t^2+96t+128)=0
We get rid of parentheses
16t^2-96t+t-128=0
We add all the numbers together, and all the variables
16t^2-95t-128=0
a = 16; b = -95; c = -128;
Δ = b2-4ac
Δ = -952-4·16·(-128)
Δ = 17217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17217}=\sqrt{9*1913}=\sqrt{9}*\sqrt{1913}=3\sqrt{1913}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-95)-3\sqrt{1913}}{2*16}=\frac{95-3\sqrt{1913}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-95)+3\sqrt{1913}}{2*16}=\frac{95+3\sqrt{1913}}{32} $
| 0.17x+0.3(x-5)=0.01(2x-4) | | 8x^2-2x=(2x+1)(2x-3) | | 8x62-2x=(2x+1)(2x-3) | | (6x)^2=0 | | (2x-11)+(3x+6)=180 | | 3/4x^2=(5/4)x+1/2 | | 3^(2x)=23 | | 39-19=4(x-3) | | 11x-2x+8x+5=32 | | 5+10x3=35 | | 5*x÷4-8=12 | | 8+d/6=14 | | Y=3x(3.6)+(-11) | | 10.5+a/4=27 | | 2/5=x=1 | | Y=3x+(-11)=-6x+(-13) | | 7.8=2.2+w/4.3 | | 4×+y=33 | | Y=2x(-4)+8 | | 23=x-(-18) | | X+10+2x=100-3x | | t2-4=0 | | 100-4p=10=2p | | 225*1/3=x | | Y=2x+8=-1x+(-8) | | -27=m-9 | | 2x−13=1/2 | | 2x−1/3=1/2 | | 2/y+3=y+9 | | 104=6(1+4x) | | 100-p=10=2p | | x–2(x+1)+3(x+2)=x–4 |